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Abstract 

A method is proposed for super-resolving multi-channel data with applications to 
PREDATOR video sequences. Using a generalization of Papoulis' sampling theorem, 
a closed-form solution has been obtained leading to a high-speed algorithm which can 
be realistically applied to large data sets such as video sequences. In existing multi- 
frame methods it is a common practice to assume that the channel transfer functions 
are known and invariant from one frame to another, using empirical models such as 
Gaussian, sine, etc. We have assumed that the transfer functions are unknown and 
may vary even when the same sensor is employed, and hence use the observed data 
to derive the Point Spread Function (PSF) for each frame. The estimated PSFs are 
used in the super-resolution algorithm. Results on PREDATOR video images are 
then given. 

Keywords: Super-resolution, video data processing, multi-channel sampling, data- 
driven estimation 
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1    Introduction 

Super-resolution refers to methods that attempt to increase resolving power by means 
of image processing. Super-resolving video data in particular is potentially of signifi- 
cant interest in visual surveillance and monitoring of human and vehicular activities 
in both civilian and battlefield applications [10][23]. In fact, many automatic target 
recognition, detection and identification problems suffer from lack of adequate reso- 
lution of the data (PREDATOR video is a good example). When replacing a sensor 
is not a feasible solution (due to either cost or technical limitations), post-processing 
by means of super-resolution algorithms is the only means of improving the resolving 
power for enhancing performance. 

Earlier work on super-resolution involved single-frame methods in which, assuming 
that the signal was of compact support in space (time), its spectrum was extrapo- 
lated outside a known support. Variations of single-frame methods include: methods 
based on analytic continuation [5], those based on prolate spheroidal wave functions 
[20][21][22], the well-known Papoulis-Gerchberg [3][12] algorithm, and some proba- 
bilistic methods [7]. 

Recent work has mostly involved multi-frame data [1] [6] [8] [9] [17] [19], where the 
assumption is that the signal is not space-limited but rather band-limited and that 
each frame has been down-sampled so that every frame is an aliased representation 
of the underlying signal. By making the assumption that the sampling matrices are 
not correlated one can then attempt to increase the sampling density by trading off 
the temporal bandwidth, and hence to unscramble some or all of the aliased portion 
of the spectrum. 

In this paper we will be mainly concerned with multi-frame methods, which clearly 
are better adapted to processing video data. However, existing methods suffer from 
a number of shortcomings which we have addressed: 

• In the existing literature, the sensor PSF is assumed invariant from one frame 
to another; empirical models such as Gaussian, sine, etc. are generally used. 
The analysis is thus simplified at the cost of reduced performance. We propose 
a method where the PSF is adaptively estimated from the observed data for 
each frame in the sequence. By allowing different PSFs for different frames, our 
method extends multi-frame methods to a true multi-channel framework. 

• Speed is an important issue when dealing with video sequences. Most existing 
methods are slow. We have proposed a closed-form solution, resulting in a 
high-speed algorithm and allowing for realistic application to video data. 



2    Multi-channel super-resolution 

Our problem is formulated as follows: We have a sequence of M images that were 
collected by a set of systems whose transfer functions are unknown. The output of 
each channel is down-sampled, in the sense that each image alone cannot represent 
the underlying input signal. We are interested in establishing a method of recon- 
structing the input signal, as well as conditions under which the reconstruction leads 
to a physically meaningful solution. 

Our analysis is based on a generalization of Papoulis' sampling theorem [13]. Con- 
sider the very simple example of reconstructing a ID signal observed by two identical 
sensors sampling uniformly with the same period T but with a temporal shift of St 
between them. If St is an integer multiple of T then the two sensors will produce 
redundant information, using twice as much temporal bandwidth as required. There- 
fore, in order to be able to trade off some of the temporal bandwidth, we must have 
St ^ kT Vk € Z. In general, this sampling is non-uniform unless St = (k + |)T 
for some integer k. However, the samples constitute a special case of non-uniform 
sampling referred to as non-uniform recurring samples, bunched samples or interlaced 
samples. This is shown in Figure 1. 
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Figure 1: Multi-channel interlaced sampling 

Therefore, even in the simplest case, the problem is outside the scope of uniform 
sampling theory. In fact, in practice the problem can be much more complicated due 
to the following factors: 

• In higher dimensions inter-frame shifts will generalize to other transformations 
whose parameters are in general unknown and need to be accurately estimated 
(the images need to be registered at sub-pixel accuracy). 

• Sensors in general cause degradations due to their PSFs. 
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• Sensors may be different (have different PSFs), or in the case when the same 
sensor is used, the PSF for each may vary frame due to lighting conditions, 
noise, etc. 

Below, we will first set the theoretical background for designing our algorithm. 

2.1    Theory 

Definition 2.1 A set U(C) C JRn is said to be a set of uniqueness for a given class 
of functions C if f = 0 on U{C) implies that f is the null function: / = 0. 

In general, a set of uniqueness does not have to be discrete, but all sets of uniqueness 
considered here will be discrete subsets of IT, i.e. multivariate sequences. Also 
the functions we will be dealing with will belong to the class of entire functions of 
exponential type, namely functions that belong to a Paley-Wiener space V [11] over 
a compact support B C Mn. The following theorem will then generalize Papoulis' 
sampling theorem to a multi-dimensional multi-resolution framework, where multi- 
resolution implies that, contrary to Papoulis' theorem, the channel sampling densities 
do not have to be equal, provided that the overall density equals that of Nyquist. 

Theorem 2.1 (Multi-Resolution, Multi-channel Band-limited Sampling) Let fit) € 
V(B) be convolved with a set of mutually uncorrelated linear shift-invariant filters 
in 4(IRn), whose spectra {hm(u)}m=lt...>M are uniformly bounded away from zero 
in B. Assume also that the outputs are known only on a discrete set of points 
{gm(Smk)}m=it...tM, where the nonsingular matrices Sm are such that 

M 

UiSmkW=W(P(B)) (1) 

Moreover, let {ym(t)}m=i,...,Af be a set of linear shift-invariant functions in £2(IR™) 
satisfying the following biorthogonality conditions over B: 

hm(u)tpm(u) = 1B (2) 

Then there exist scalars cmk such that 

i     M 

/(*) = Ü7 E    E   CmWm(t ~ Smk) (3) 
1V1 m=l kezn 

with convergence being uniform and cmk = ^m(STOk). 



For a proof see [16]. 

In fact, {<pm(t - Smk)}m=lv..iM, which we shall refer to as the biorthogonal set, 
constitutes a Riesz basis in V(B), and each component in the set can be found as a 
space-varying linear transformation of Papoulis' periodic inverse filters (see [16] for 
details). 

In contrast to Papoulis' theorem, where the reconstruction algorithm is based on 
solving a large linear matrix equation, the above theorem provides a more straight- 
forward method. In fact, note that the biorthogonal set is known if the channel 
transfer functions (i.e., the PSFs) can be estimated and the sampling matrices can be 
specified. In image processing terminology, the latter implies that the image frames 
need to be registered. For the registration we have used a method based on phase 
correlation developed in [2] [18]. 

As for the reconstruction, in principle, any basis can be used (wavelet, orthogonal 
polynomials, etc.). The Fourier basis, for instance, can be found using the duality 
due to the Paley-Wiener theorem [11]: 

{^m(u)ea:p(-i(Smk,u»}TO=li...ijif (4) 

where, for our application, the k's take their values in compact subsets of Z2, () is 
the usual inner product in IR2, and u (with abuse of notation) will hereafter stand for 
discrete frequency vectors sampled at super-resolution density. Note from equation 
(4) that the expansion of each frame on the biorthogonal basis can be found by 
expanding on the standard orthonormal basis followed by applying the biorthogonal 
filter <pm(\i) (a projection). The basis is completely specified if we can find <£m's which 
are in turn specified according to the biorthogonality condition in terms of the channel 
transfer functions. Once the channel transfer functions have been estimated, we can 
reconstruct the biorthogonal set (or a pseudo-biorthogonal set if the transfer functions 
contain singularities). Therefore, in the next section we will develop a data-driven 
method for estimating the PSFs. 

2.2    Estimating the PSFs 

In this section we will define our PSF model, or more precisely its spectrum, ref- 
ered to as the Optical Transfer Function (OTF). We will then develop a method 
for data-driven estimation of the OTFs. As we will see in the next section, the 
proposed method is particularly applicable to video data, since it requires two im- 
ages with only relative shifts between them. In fact, in video sequences (such as 
PREDATOR data) transformations between successive frames can be closely approx- 
imated by shifts and a small-angle rotation within the image plane. Therefore, by 
using a registration method (see the section on implementation), successive frames 



are rotation-compensated prior to PSF estimation. 

In the existing literature on super-resolution, it is a common practice to assume 
that the OTF is known and traditionally empirical models such as Gaussian, sine, 
etc. are adopted. Although these models can greatly reduce the complexity in both 
analysis and implementation due to their nice global behavior (isotropy around the 
origin), they fail to capture local variations of the OTF and hence are not useful for 
adaptive estimation and inversion. 

We will show below how more versatile local adaptive models can be built using 
local isotropy. For this purpose we will assume that the OTFs of the imaging systems 
are linear shift-invariant and of finite duration and hence can be represented by FIR 

filters: 
Mu) = 2 cfcexp(-z(u,k)) (5) 

keT 

where the cks are constants, and T is a compact subset of Z2. 

As is well known, due to the fundamental theorem of algebra, in the univariate 
case the transfer function hm can be factored as the product of its roots: 

N 

hm(u)   =   Aj[(l - akexp(-iu)) (6) 
fc=0 

=   A n(l -akz-') (7) 
fc=0 

where N specifies the extent of the impulse response, the aks and A are constants, 
and z = exp(zu). 

Clearly hm is then specified up to a scale factor if its roots are known. Unfortu- 
nately, due to the general impossibility of factoring polynomials in higher dimensions, 
this simple convenient factorization of the spectrum in univariate problems does not 
extend to n > 1 dimensions. 

However, we will show that in the two-dimensional case the problem can have a 
solution too. We start by assuming that the zeros of our channel transfer functions 
occur at isolated points1. Since the transfer functions are then either locally convex 
or concave around their zeros, one may assume local isotropy in small neighborhoods 
of the roots. The following results will show how a two-dimensional spectrum with 
isolated zeros can be factored. 

1In general, the zeros of an entire function of two or more variables do not have to be isolated. 
However, in practice they often occur at isolated points [15]. 



Proposition 2.1 Let {(n}nez be a set of isolated points in C". Then any function 
defined over C n, which is locally isotropic around these points, can be decomposed 
into a sum of functions, each globally isotropic around one point of the set. 

The existence of such a decomposition under appropriate boundary conditions is 
obvious. However, the decomposition is not necessarily unique, which suggests that 
the inverse may not necessarily be true. In other words, a sum of functions that are 
globally isotropic around distinct isolated points will not necessarily yield a function 
that is locally isotropic around these points. In fact, counter-examples can be readily 
found. 

Theorem 2.2 Let hk(u,v) be the spectrum of a band-limited function vanishing out- 
side a compact support T C E2. Let also hk(u,v) be isotropic around the point 
(uk,vk). Then 

lim bkhk(u, v) = exp(-iutk) (8) 

where UJ = ((u - uk)
2 + (v - vk)

2)2 and 

tk = (4 + y2
k)* with (xk,yk) e T. 

For a proof see the appendix. 

Let us now assume that the channel transfer functions are locally isotropic around 
their roots. Then according to Proposition 2.1 we can write 

Ä A 

hm(u,v) = 22h™k(u,v) (9) 
k 

where for every m, hmk is globally isotropic around one root of hm. We shall denote 
the roots of hm by the set {(uk,vk)}keK, where K is a compact index set. 

Therefore, an OTF which is locally isotropic around its roots can be expanded as 
follows: 

h(u,v) = YJakexp{-iutk)     where ak = b^1 (10) 
k 

To physically interpret this convergence at the limit, notice that the bks define the 
radii of local isotropy around the roots. Therefore, the more local the isotropy is, 
the better the OTF can be approximated by an expansion of the form (10). This 
assumption of local isotropy clearly relaxes the severe constraints usually imposed in 
the literature by global symmetries. 

2.3    Spectral Factorization 

In the classical literature this term is used when it is required to find a function whose 
power spectrum is known. The problem has a solution if the power spectrum satisfies 



the Paley-Wiener condition [14]. Below we will use the term in a more general context 
where two functions are sought whose cross power spectrum is known. We will show 
that the solution can be found if the functions are of compact support (e.g. FIR 
filters). The support constraint condition is clearly equivalent to the Paley-Wiener 
condition due to the uncertainty principle [14]. 

From the expansion in (10) and the fundamental theorem of algebra, it immedi- 
ately follows that 

h(u,v) = Aj[{l-ckz-
1) (11) 

k 

where A and the cks are constants and z = ex\o(iu) = exp (i ((u - ukf + (v - vk)
2)2 ) ■ 

Clearly, the factorization is only valid if the cks are identically equal to unity. 
Therefore, if the roots of the OTF are specified, the OTF is known up to a scale 
factor. We will deal with the scale factor shortly. Let us first see how the roots of the 
OTF can be estimated from two observations of the same scene. 

Consider the case where an object function has been observed by two systems 
modeled as 

gi = hji + üi (12) 
fa = hh + n2 (13) 

where f2 is a shifted version of /i, hi and h2 are the OTFs, nx and h2 are random 
noise processes, and fa and fa are the observed image spectra. 

When /i and f2 are uniformly bounded away from zero on their supports, we can 
write 

fa = Wi (14) 
fa = hg2f2 (15) 

where hgl = h + fti/f and hg2 = h2 + h2f2, with * denoting the complex conju- 
gate. We shall refer to such transfer functions as the Generalized Transfer Functions 
(GTFs) of the imaging systems. 

We can now note that the magnitude of the cross power spectrum is given by 

I fag; 1=1 kr"* i (16) 

Therefore, since both hgX and hg2 are assumed to be FIR filters, the poles of the 
cross power spectrum will be uniquely determined by the roots of hg2. In practice this 
implies that the roots of hg2 will be present in the form of singularities, appearing 



as a set of spikes scaled at different frequencies. In other words, the roots can be 
identified by simple inspection of the magnitude of the cross power spectrum. Figure 
2 shows an example of these spike patterns. 

Figure 2: Typical spike patterns appearing in the magnitude of a cross power spectrum 
corresponding to isolated zeros of one of the transfer functions 

To determine the scale value A we will assume that the GTFs preserve the mean 
value of the object function and hence 

n*(l - exp(-i^k)) 
(17) 

where ^k = (u\ + vffi. 

Therefore, by identifying the singularities (spikes) in the magnitude of the cross 
power spectrum, we can completely specify the corresponding GTF. 

2.4    Constructing Pseudo-biorthogonals 

In the absence of noise the GTF is equal to the OTF and when the OTF is an ideal 
all-pass filter it corresponds to the noise process. We shall now use a simple method 
for constructing the biorthogonal set. In fact, since in our model the GTFs (or the 
OTFs) are assumed to have a set of isolated zeros, we can only attempt to construct 
a pseudo-biorthogonal set. One may consider several approaches for constructing a 
stable pseudo-biorthogonal set, for instance by using an approximation around the 
origin. 

Below, we will use a simple method which is based on the following identity derived 
from the biorthogonality condition: 

(l+<)3m)-1 = /im(l + £m)-1 (18) 

8 



Using a first-order expansion of the left-hand side around the origin, we find that 

1 - £m + 0(#J ~ M1 +A™)"1 (19) 

and hence 

<pm ~      t
K (20) 

ltm">m T itm 

which has some resemblance to the standard Wiener filter. 



3    Implementation and Results 

We have implemented our method using a Fourier basis. The following are the 
steps in the algorithm: 

• For a sequence of M successive frames the PSFs are estimated by estimating 
the inter-frame rotations [2] and then using the method described above. 

• The pseudo-biorthogonals are constructed for projection onto optimal bases. 

• Each frame is decomposed on a standard orthonormal Fourier basis and then 
projected onto a more optimal Riesz basis using the corresponding pseudo- 
biorthogonal transfer function. 

• Using sub-pixel inter-frame displacement values [18], successive frames are re- 
aligned and added into a single frame according to (3). 

The method has been tested on numerous images from PREDATOR video sequences, 
some of which are shown below. The results have been compared to interpolation by 
Shannon's sampling expansion (i.e. infinite-order interpolation) followed by image 
sharpening. 

In each sequence presented below, image (a) shows one of the low-resolution frames 
in a sequence of images; image (b) is its interpolated version; and image (c) is the 
super-resolved version. Interpolating using Shannon's sampling expansion is, in fact, 
equivalent to decomposing the frame on the standard orthonormal basis and then 
ideally low-pass filtering for reconstruction on a denser basis. Clearly, lower-order 
interpolations (such as bilinear) would yield even lower quality images. The interpo- 
lations in (b) have two main shortcomings compared to the super-resolved images in 
(c): 

• As is well known, an orthonormal basis is only sub-optimal in the presence of 
noise and other degradations and hence in practice Shannon's interpolation can 
only provide sub-optimal results. Although, when the signal to noise ratio is 
high, interpolation followed by sharpening may result in good results, for a very 
low signal to noise ratio this approach can considerably enhance the noise and 
the artifacts of the contaminated signal. Therefore, an advantage of our super- 
resolution algorithm is its capability of resolving visual information in noisy 
data such as PREDATOR video. 

When using Shannon's interpolation, samples are only specified by a single 
frame and hence the temporal bandwidth is not exploited, as in our super- 
resolution method, for increasing the sampling density. 

10 



Note that the images used for experimentation are real data for which the ground 
truth is not available and therefore it is not possible to investigate the quality of 
the super-resolved or interpolated images in terms of signal-to-noise ratio or other 
quantifying measures. However, our future plan is to investigate the quality of the 
results in terms of the performance improvement in state-of-the art automatic target 
recognition, detection and identification methods. Results should be available in a 
comprehensive report in the near future. 
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Figure 3: (a) One of the test images in the sequence, (b) interpolation and sharpening 
(c) super-resolved image 
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Figure 4: (a) One of the test images in the sequence, (b) interpolation and sharpening, 
(c) super-resolved image 
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Figure 5: (a) One of the test images in the sequence, (b) interpolation and sharpening 
(c) super-resolved image 
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In the following images we have zoomed in to some regions in Figure 5 and Figure 
3 where a vehicle and a tank can be seen closely in both the interpolated/sharpened 
version and the super-resolved version. One can easily see the clear recovery of the 
edges of the vehicle and tank in the super-resolved image compared to the artifactual 
versions obtained by interpolation and sharpenning. 

(a) (b) 

Figure 6: Zoomed areas: (a) Interpolated/sharpened, (b) super-resolved 

Figure 7: Zoomed areas: (a) Interpolated/sharpened, (b) super-resolved 
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4    Conclusion 

A method of multi-channel super-resolution has been proposed, based on project- 
ing image frames in a sequence onto a more optimal Riesz basis and exploiting the 
temporal bandwidth to increase the spatial resolution. Several contributions have 
been made: 

• A unified mathematical framework based on non-uniform sampling theory. 

• Direct extraction of channel transfer functions from the input data, allowing for 
the design and implementation of sensor-dependent reconstruction and adaptive 
estimation of variations in the imaging environment, e.g. the PSF and the noise. 

• A closed-form solution leading to a high speed algorithm: typically 15 seconds 
per 256x256 frame, using 10-channel data fusion, on an Ultra Sparc 1. 

Thus the multi-frame setup commonly used in the literature has been extended to 
a multi-channel setup, where the imaging parameters are assumed to vary from one 
frame to another. This generalization also allows extension of the method to other 
sensor types such as radar or infra-red. 
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Appendix 

Proof of Theorem 2.2: First, a well-known result is applied by change of variables 
to polar coordinates: 

u — Uk = ucos((fi) v — Vk = ü)sin(ip) 

x = tcos(0) y = tsin(6) (21) 

This leads to the following representation of the Fourier inversion theorem for h: 

fOO A 

hk(t)exp(-itpk) = /    uhk(<jj)Jo(tu)(Lj (22) 
Jo 

where pk = UkCos(8) + Vksin(0), hk(w) = hk(u,v) stands for the Hankel transform of 
hk(t) = hk(x,y), and Jo is the zero-order Bessel function of the first kind. 

Applying the Hankel inversion theorem we then obtain 

hk(u)) = /    thk(t)exp(—itpk)Jo(t(jj)dt (23) 

where bk is the radius of local isotropy. 

Since at (u,v) = (uk,Vk) we have hk(u) = 0, we can write 

/ * thk(t)exp(itpk)dt = 0 (24) 

Substituting from (22) into this last integral equation, we get 

/    t /    uhk(u;)Jo(tu)dudt = 0 (25) 
Jo     Jo 

which, after changing the order of integration, yields 

f°°   ~ rh , 
/    üjhJüj) /    tJ0(tu)dtdu = 0 (26) 

Jo Jo 

Using the well-known identity 

fa tj0(t)dt = tMat) (27) 
Jo 

we deduce that 

ptJoMdt = ^M (28) 
JO 10 

/    bkhki^Mbk^duj = 0 (29) 
Jo 
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Therefore 



Finally, using the following integral relation for Bessel functions of the first kind [4]: 

r°° j±("+i)    ,  . n 
JQ Jn{bu)exp(±iua) = ~rp=ß {a - Va2 - 62) (30) 

we conclude that 

lim bkhk(u) = exp(-iLotk) (31) 
bk-+0 x      ' 

where tk = {x\ + y\)i and (xk,yk) is a constant vector in T. 
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Errata 

1. Page 7 paragraph 5 immediately after equation (15) should read: 

where hg\ = hi + nifk and h92 = h2 + ^2ft with * denoting the complex conju- 

gate and l/xl = |/2| = |/|. 

2. Page 7 equation (16) should read: 

I 9i92 1= c | Ä5lÄ*2 |        where c = |/| 
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